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Abstract. We discuss the possibility of having an infinite hierarchy of length scales 
characterising the moments of the Laplacian field outside DLA clusters, in rhe entire space. 
This hierarchy constitutes a multifractality for DLA which is different from the usual one 
associated with the near field of these clusters. The radius of gyration and the hydrodynamic 
radius are both members of this new family of length scales. We present numerical 
simulations on the usual DLA model, and on the fracture growth model (i.e. ‘elastic’ DLA), 

testing this hypothesis. 

Most of the earlier investigations of stochastic growth models, such as the DLA model 
[ 13, concentrated on purely geometrical properties of the growing clusters (see especially 
the first reference of [ 11). However, during the last two years, several studies of some 
dynamical aspects have appeared [2]. In particular, the growth probability on the 
surface of these clusters has shown a very rich structure known as multifractality [3]. 
This means that the moments of the probability distribution scale with an infinite set 
of independent exponents. This phenomenon has several practical consequences, such 
as the fact that the drag force distribution on the surface of the clusters in a flow is 
anomalously broad [4]. The growth models are all based on the interaction between 
the growing surface and a surrounding Laplacian potential 4. The multifractality of 
the growth probability distribution is a consequence of the behaviour of the gradient 
of the field, V+, at the surface of the clusters. However, one may ask whether there 
is some non-trivial behaviour of this gradient also in the bulk surrounding the growing 
clusters. Cates and Witten suggest that no such bulk multifractality exists [5]. However, 
this is certainly an important question, as the interactions of the cluster as a whole 
with its surroundings are determined by the bulk behaviour of 4. Testing this is the 
aim of this letter. It is easy to show that the zeroth and infinite moments are different. 
A similar argument suggests that there is a discontinuity at the zeroth moment, and 
all the other scaling exponents are equal. Whether this is so, or whether there is a 
‘genuine’ multifractality with an infinite set of different exponents, is not possible to 
determine from the computer simulations. The multifractality of the bulk distribution 
in connection with growth models may be expressed as an infinite hierarchy of length 
scales describing the effect of the clusters on the surrounding Laplacian field. The 
radius of gyration of the clusters is associated with the scaling of the infinite moment, 
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and the hydrodynamic radius with the second moment. Our numerical results are 
based on numerical studies of the dual of the usual diffusion-limited aggregation (DLA) 
model, and the fracture growth model [6,7] which is a central-force elastic version of 
the dual of the DLA model. 

We briefly recall the definition of DLA, and its dual, the DDLA model. Although 
the two problems are equivalent in two dimensions, this is not the case in higher 
dimensions of space. The concept of duality in connection with the DLA model makes 
clear the connection with fracture, or more precisely, the fracture growth model (FGM). 

We first consider the case of DLA. For simplicity, we will only consider here the 
case of a cluster grown on a lattice. Let us consider a single bond that will constitute 
the initial seed of the cluster. All bonds belonging to the growing cluster are given a 
uniform zero potential. At infinity the potential is assumed to be unity. In the space 
which is not occupied by the DLA cluster, we compute the harmonic potential 4 which 
satisfies the Laplacian equation V 2 4  = 0, and the previous boundary conditions. Next, 
we grow the cluster by adding to it a bond that was lying on its perimeter. This bond 
is selected at random, with a probability proportional to the local potential difference 
across the bond. Then the Laplace equation is solved again with the new boundary 
conditions arising from the modification of the geometry of the cluster. A new perimeter 
bond is then chosen according to the previously described algorithm, and subsequently 
added to the cluster. This is the most classical geometry used to study DLA. We can, 
however, consider other types of boundary conditions that will not change the observ- 
able scaling properties when the clusters do not come too close to the boundaries of 
the lattice. For instance figure I(a) shows the implementation of this procedure in a 
finite square box, where a whole side of the square was chosen to be the seed of the 
cluster. These boundary conditions simplify the connection with the DDLA model, to 
which we now tum. 

We define the dual DLA ( DDLA) model by replacing potential gradients by currents 
and insulating borders by equipotential ones and vice versa, following the method of, 
e.g., Straley [ 81. After this substitution, the growing cluster consists of insulating 
material. One way of visualising this duality transformation is to think of a cluster of 
broken bonds in a resistor network. The Laplace equation is unchanged in the rest of 
the medium; see figure l (b) .  The growth probability on the surface of the growing 
cluster is now proportional to the current flowing along it, instead of the potential 
gradient orthogonal to the surface. In two dimensions the original DLA model and the 
dual one are equivalent. This can be shown in the continuum limit by considering the 
holomorphic complex function whose real part is the potential 4 and whose imaginary 
part is the potential distribution of the corresponding DDLA problem. This correspon- 
dence also works directly for the lattice problem, as was shown by Straley [8]. 

The dual DLA problem is already close to a fracture problem. If the cluster is grown 
on a lattice, the bonds that become part of this growing cluster tum from being resistors 
into insulators. This growth can thus be seen as a process where fuses on the surface 
of a cluster of already bumt-out fuses break with a probability proportional to the 
current flowing through them. Now, if we turn this problem into an elastic one by 
replacing the electrical fuses by elastic elements that break if the stress they carry 
exceeds some critical limit, we have a model [6,7] for important rupture processes 
such as stress-induced corrosion. One may state this conversion from an electrical 
problem into an elastic one in a more general way, however: the only change that 
needs to be done in order to turn the DDLA model into an elastic growth model is to 
incorporate the operator of linear elasticity that corresponds to the Laplacian [9]. One 
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Figure 1. (a) A particular set of boundary 
conditions which allows us to grow DLA 

clusters from the basis line AB where all 
sites, including those of the DLA struc- 
tures, are set to a zero potential. The upper 
line CD is at a constant potential of 1. The 
two border sides, A D  and BC, are insulat- 
ing. The DLA is grown by choosing at 
random a site on its boundary, with a 
probability proportional to the local 
potential. 

( b )  The dual DLA model is construc- 
ted from the previous case by exchanging 
the role of currents with potential 
gradients, and equipotential parts with 
insulators. Now the DLA cluster is insulat- 
ing, and the growth probability is propor- 
tional to the current passing through a 
neighbouring bond to the cluster on the 
dual lattice. Although the DDLA model is 
strictly equivalent to DLA in two 
dimensions this is not the case in three 
(and higher) dimensions. 

( c )  The fracture growth model is 
obtained from the previous DDLA by 
changing the Laplace operator into the 
Lam6 one (see text for definition). The 
potential is turned into the displacement 
field, and the growth probability is propor- 
tional to the absolute value of the force. 
The displacement is imposed on the two 
lateral edges AD and BC. The fracture 
cluster is infinitely soft. 

way of implementing this on a lattice is to work with a central-force lattice. In this 
model, known as the fracture growth model (FGM), the bonds consist of linear Hookean 
springs free to rotate about their endpoints. A given displacement is imposed on the 
boundary as shown in figure l(c).  Then a spring is broken on the border of the existing 
cluster-or crack-with a probability proportional to the force carried by the bond. 
We now investigate the scaling of the field outside the clusters. 

The solution of Laplace's and the elastic equations for the case of a circular hole 
has the form 

(1) 

where +o(t)  is the potential (or displacement) for the medium without the hole, for 
boundary conditions expressed in terms of the field, V 4 .  The nth moment of the field 
gradient relative to that of the background field 4o is, for n positive, 

4( t) = 40( r )  + Ar-'d-l)  

where R is the radius of the hole. If now, instead of keeping the field constant at 
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infinity, one chooses to keep the potential fixed, the scaling becomes 

~ r v 4 ~ P ~ l " ~ " - ~ ~ v 4 0 ~ P ~ l n ~ " =  I, dPfd-'{EV4(P)l" - r v 4 0 ( P ) l " l = R d .  (2') 

These properties can be used to define effectives sizes of DLA clusters, estimated 
on various measures (moments) of the external field. 

Let us compute the nth moment, m,, of the potential gradient outside the DLA 
cluster as defined by the LHS of (2'), in the constant potential ensemble. This moment 
scales with the mass, M ,  of the cluster according to the power law 

m, M ~ ( " ) .  (3) 

Comparing the scaling with the one obtained for a circular hole of radius R, one can 
define a hierarchy of effective radii R, ,  by equating the two expressions: 

(4) R,  MY(n)/d 

We thus find a relation between the radius R ,  and the mass, which obviously depends 
on the measure used, or equivalently on n. When n = 0, then y ( 0 )  = 1, and Ro is the 
radius of a circular hole whose area is equal to that of the DLA cluster. Here, the 
moments may behave differently in the limit n + O + ,  as for n = 0. This situation may 
occur if the screening of the field 4 within the fjords of the DLA cluster is strong 
enough (i.e. exponentially damped) so that the cluster looks compact from the outside. 
If this is so, then y (n+O+)= d / d f ,  and there is a discontinuity of the exponents at 
the point n = 0. Using the geometrical radius of gyration R,  of the DLA, which scales 
as M a  R:, we obtain 

R , a  Ri l ld .  ( 5 )  

When n = 2 ,  R ,  is the radius of a circular hole which reduces the conductivity of a 
plane as much as the cluster. Due to screening, one expects the scaling exponent of 
R2 to be larger than that of R o .  Indeed, figures 2 ( a )  and 2 ( b )  show the log-log plot 
of three moments m, , m, and m3 against the mass of the cluster, from which we can 
extract the three exponents y ( l ) ,  y ( 2 )  and y ( 3 )  reported in table 1 .  Here, for DDLA, 
y(2) = 1.2kO.l. From this it follows that 

(6) R 2 a  ~ i ( 2 ) d J d  a RL'2) 

with 4 2 )  = 1.0*0.1. This exponent is close to 1, indicating that the conductivity radius 
is very close to the radius of gyration. A similar radius would tell us the change in 
the viscosity of the flow outside the cluster due to its presence if this is interpreted as 
a hydrodynamic problem. The n = 4  moment may be related to the second moment 
of the fluctuations of the conductivity of the medium surrounding the hole. 

For large-order moments, the 'hottest' part of the cluster neighbourhood will be 
weighted dominantly. Therefore, the sites that will contribute most to these large-order 
moments will be located near the tips of the DLA cluster, and located far from its 
centre. However, since the extreme extent of the cluster scales the same way as the 
radius of gyration, as shown by recent numerical simulations [ 101, we expect { y (  n ) d f / d }  
to approach 1 when n goes to infinity, or y ( n )  to tend to d / d ,  (=1.17 in 2~ for DLA). 

We studied numerically two problems: the DDLA and the FGM. For both cases, we 
generated square-shaped 64 x 64 triangular lattices. For DDLA, the top and bottom 
rows were bus bars set to a fixed potential of 0 and 1 respectively. We implemented 
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Figure 2. ( a )  Log-log plot of the first three moments of the current distribution outside a 
DDLA cluster against its mass compared with the intact lattice. ( b )  Log-log plot of the 
first three moments of the force distribution outside a crack (FGM model) against its mass 
compared with the intact lattice. In both parts, plots are shown for n = 1 (e), n = 2 (0)  
and n = 3 (m). 

Table I .  Values of the different exponents y ( n )  and z ( n )  for n =0-3, for both models 
studied in this letter. The data are extracted from the plot of the evolution of the moments 
against the mass M, for large M, as shown in figure 2 ( a )  for the DDLA model and in figure 
2(b) for the FGM model. 

Moment order DDLA FG M 

n v ( n )  z ( n )  y ( n )  

1 0.85 1 
1.3 1.1 1.6 
1.2 1 .o 1.5 
1.2 1 .o 1.5 
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periodic boundary conditions on the other edges. The cluster was initiated by the 
removal of the central bond of the lattice. The FGM was treated in a similar manner. 
In this problem, each bond is a linear spring which can rotate at its endpoints. We 
imposed a displacement on the two bus bars (now infinitely rigid): one was fixed and 
the other was sheared (displacement along its axis), or compressed (displacement 
perpendicular to it). A first bond broken in the centre of the plane constitutes the 
starting stage of the cluster (i.e. the crack). 

For both problems, we computed the potential or the displacement outside the 
cluster by a conjugate gradient technique [ l l ] ,  with using the norm of the residual 
vector as stopping criterion, and chosen to be lo-''. A more detailed presentation of 
the computation has been presented in an earlier study [7]. We invested about 25 CPU 

hours on a Cray X-MP on these calculations. 
The data extracted from our numerical simulation show a surprising fact: the 

exponents y ( n )  obtained for both the vector and the scalar case start for n = 0 by 
y ( 0 )  = 1, as per definition. Then the value of y ( n )  increases sharply for n = 1, and 
then decreases for subsequent values of n toward their asymptotic value d / d ,  when 
the exponents are extracted for small values of M. This non-monotonicity of the 
evolution of y (  n) is counter-intuitive if we compare it with the usual behaviour of the 
infinite hierarchy of exponents appearing in multifractal phenomena. Two competing 
factors are responsible for this behaviour. (i) The higher the order of the moment, n, 
the less weight is given to the inner 'fjords' screened by the arms of the DLA. This 
causes an increase of y ( n )  with n. (ii) For low-order moments, the outside of the 
cluster also has a large weight, and therefore even regions located far from the cluster 
contribute significantly to the moments. If we consider only this trend, then the 
exponent y ( n )  should decrease with n. This latter argument may appear also as an 
enhancement factor of the spurious edge effects necessarily present at a finite distance 
in our approach. 

Indeed, one can show easily that the second exponent y ( 2 )  should be less than or 
equal to the limit y(m)  = d / d f .  If  one cuts out of the plane a circular hole that contains 
the cluster, then the energy (second moment) will decrease, and since the radius of 
the hole is proportional to the radius of gyration, we derive the bound y ( 2 )  s d / d f .  

A recent numerical study of the hydrodynamic radius of DLA clusters in three 
dimensions, by Chen et a1 [12], has suggested that the latter radius increases faster 
than the gyration radius in contrast to bond-percolation clusters, where both radii 
seem proportional. For another kind of fractal aggregate studied experimentally by 
Wiltzius, i.e. colloidal silica aggregates [ 131, both radii seem proportional. 

We are thus tempted to conclude that the trend observed in our numerical simula- 
tions, i.e. the fact that y(1) is larger than d / d f ,  is only a finite-size effect. However, 
the fact that y ( 2 )  and y(3) are already very close to d / d f  is intriguing. If  y ( 2 )  is equal 
to d / d f ,  we expect naturally that for all n larger than 2, y ( n )  is also equal to d / d f .  
However, it is clear that y ( 0 )  = 1 .  As suggested above, there might be a discontinuity 
in the y (  n) spectrum between the value of y ( 0 )  and y (  n + O+) in the case of exponentially 
strong screening. Therefore, between n = 0 and 2, there is either a continuous increase 
of y ( n )  or an abrupt jump. The first case would thus restore the infinite hierarchy of 
effective sizes of the clusters, whereas the second would imply that the hierarchy of 
exponents contains two discrete singularities that can be isolated by a multifractal 
analysis. We note that the situation for n < 2 is special already for the simple two- 
dimensional case of a circular hole in a restricted geometry such as the one studied 
here. By solving the Laplace equations analytically for this case, one finds that the 
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first moment scales as RZ, where R is the radius of the hole. This result is counter- 
intuitive, since simple power counting in (3) indicates that this moment should be 
governed by the outer boundary, and not by R. Clearly, some delicate balancing of 
effects are in play for this moment. 

In any case, careful numerical studies of this question would prove useful in 
describing these various effective sizes of DLA clusters and the eventual existence of 
an infinite hierarchy, or of a discrete spectrum of singularities. We regard our numerical 
result as only suggestive, and urge further such studies of this interesting question, but 
warn that they require huge amounts of computation time. 

We thank E Guyon and P Meakin for many useful discussions on this subject. The 
computations reported here were done on a Cray X-MP/24 at RUNIT, Trondheim, 
due to a grant by the Norwegian Council for Science and the Humanities (NAVF). 
AH was supported through the SFB125 of the DFG and SR by the ATP ‘MatCriaux 
HCtCroghes’. 
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